

WRF 4973 Fact Sheet: ID 1901

Strategy: Operational Savings

Optimize Operation and Maintenance

Fouled Diffusers Create Loss of Efficiency and High Energy Use. Reprinted with permission from Michael Stenstrom.

Monitoring Sludge Blanket Depth in a Clarifier. Printed with permission from HDR Engineering, Inc.

This fact sheet focuses on optimizing a water resource recovery facility (WRRF) from an operational standpoint. Opportunities for optimization cover all aspects of the WRRF operations: energy use, chemical use, maintenance, materials, laboratory and administrative support, and labor associated with all activities. Because of the interrelationships connecting various functions of operation at the WRRF, implementing cost-saving and performance-enhancing approaches typically requires collaboration between all WRRF staff, including management. A process analysis can provide insight and direction on how staff can optimize a WRRF's process performance and reduce nutrients in the effluent.

Operational optimization strategies include adjustments or changes in equipment, replacing inefficient or aged facilities, replacing old and fouled diffusers, replacing oversized blowers or pumps, selecting more cost-effective chemicals, fine-tuning the control systems for blowers and chemical feed systems, and implementing many other strategies. All these strategies can reduce the energy, chemical, and maintenance costs of a biological nutrient removal (BNR) process.

Beyond treatment, streamlining administrative functions (e.g., procurement rules) or providing incentives for staff to improve operational efficiency can provide cost savings as well. Laboratory sampling and analysis procedures and requirements can be reviewed to determine sampling needs. Less sampling may not always be the best option though, because special and nutrient species samples can identify avenues to reduce nutrient discharges and potentially reduce the overall operating cost.

The <u>Additional Information</u> section contains more detailed information on potential strategies to optimize operation. Many of these specific strategies are described in related fact sheets.

Fact Sheet Application Checklist

R = fact sheet relevant to item

PR = fact sheet is potentially relevant to item depending on application, existing conditions, etc.

			Ι]
Category		Intensification	Goal	R	Improve reliability
	R	Chemical addition		R	Reduce nutrient
	R	Carbon management		R	Reduce O&M cost
	R	I&C strategies			1
	PR	Sidestream mgmt.	Group	R	Optimize existing CNR
	R	Energy savings		R	Optimize existing TNR
	R	Chemical savings		PR	NutRem in secondary plant
	R	Operational savings		·	
		Other means of NutRem	Process		Small
		1			Pond
Nutrient	R	Ammonia			Fixed film (secondary)
	R	NOx			Conventional act. sludge (CAS)
	R	TN		R	Nitrifying act. sludge (NAS)
	R	Ortho-P		R	Conventional NutRem (CNR)
	R	ТР		R	Tertiary NutRem (TNR)
					Other
Scale	PR	Small (<1 mgd)			
(design flow)	R	Medium (1–10 mgd)	CAS = conventi	ional act	ivated sludge (BOD only)
	R	Large (>10 mgd)	NAS = nitrifying	g activat	ed sludge (without denitrification)
			CNR = convent	ional nut	trient removal no chemical/no filter, etc.
			TNR = tertiary	nutrient	removal with chemical, filter, etc.

Technology Summary Evaluation

Footprint	3	Compared to conventional (1 = much smaller; 3 = conventional; 5 = much larger)
Development status*	4–5	Technology ranking based (LIFT) see below*
Energy use	1	Scale 1–5: 1 = use much less; 3 = use similar to conventional; 5 = use much more
O&M cost	1	Scale 1–5: 1 = cost much less; 3 = cost similar to conventional; 5 = cost much more
Material/consumables	1	Scale 1–3: minimal = 1; some = 2; significant = 3 (e.g., UV lamps/membranes)
Chemical use	1	Scale 1–3: minimal/none = 1; some = 2; significant = 3 (e.g., chemical process)

* Technology ranking based on Leaders Innovation Forum for Technology (LIFT) Water Research Foundation (WRF) Technology Development Level (TDL) definitions:

1 = bench research and development

- 2 = small-scale pilot
- 3 = full-scale pilot (demonstration)
- 4 = pioneer stage (production and implementation)

5 = conventional

Descriptions/Evaluation

Strategy	Reduce costs and nutrient discharge from WRRF by optimizing operations
Description	This fact sheet provides an overview of strategies that operations, maintenance, and other staff can initiate to improve nutrient removal and/or reduce operational costs at a WRRF. Cost categories include items such as energy, process, chemical, automation and control, maintenance, and other strategies.
Application	Opportunities to optimize operational improvements and savings at WRRFs are typically recognized first by the staff of that WRRF. This includes everyone that works at the WRRF, including administrative, management, process analysis, and laboratory staff. Cost savings and performance enhancements can often be recognized by engaging and empowering staff members to propose and implement optimization strategies. The enhancements can be in the form of new process ideas, new approaches, addressing administrative barriers, and other opportunities.
Constituents removed	All nutrients
Development status*	Most operational improvement strategies will fall within LIFT TDLs 4–5. However, some newer approaches and equipment could be appropriate to test at a bench, pilot, or demonstration scale. Most strategies are built and developed from experiences at the WRRF, or other similar WRRFs, and can often be tested and evaluated at the WRRF to ensure their success.
O&M considerations	Depends on the strategy. Changes in the labor skill required to operate and maintain a process may require additional training. Typically, this can be achieved with on-the-job field pilot/demonstration testing.
Benefits	Benefits depend on the strategy, but cover improved process performance, reduced operational cost, improved staff engagement, and better morale.
Limitations	Institutional procedures and rules may pose a barrier for some strategies.
Design considerations	Depends on strategy, but generally none to some minor design is required
Potential fatal flaws	None
Footprint requirements	None
Residuals	Depends on strategy, but typically similar to existing operations
Cost considerations	Depends on strategy
Past experience	City of Henderson, Nevada: biological process, operations and maintenance (O&M) Hampton Roads Sanitation District (HRSD), Virginia: energy, process, chemical, O&M, automation Clean Water Services, Oregon: energy, process, chemical, O&M, automation Central Contra Costa Sanitary District, Martinez, California: diffuser testing/cleaning
Publications	Reardon, D. 1998. "Energy Usage Wastewater treatment plants." Waterworld, August 31.
	U.S. Department of Energy. 2019. "Energy Data Management Manual Wastewater Treatment." DOE/EE-1700 Better Buildings, U.S. Department of Energy, December 2017.
	WEF. 2017. "Operation of Water Resource Recovery Facilities, MOP 11." Water Environment Federation (WEF).
Related fact sheets	Many of the fact sheets are referenced below in <u>Additional Information</u> . The overview fact sheets are listed here (additional ones listed below): 1101: Process Intensification Overview
	1301: Overview of Chemical Addition
	1301: Overview of Chemical Addition 1501: Overview of Instrumentation and Controls Strategies

	1601: Reject Water (Sidestream) Management Overview
	1701: Reduce Energy Consumption Overview 1801: Overview Chemical Saving Strategies
	1901: Optimize Operation and Maintenance
Date updated	9/10/2022
Contributors	JB Neethling, Anand Patel

Note

* Technology ranking based on LIFT WRF TDL definitions:

1 = bench research and development

2 = small-scale pilot

3 = full-scale pilot (demonstration)

4 = pioneer stage (production and implementation)

5 = conventional (https://www.waterrf.org/sites/default/files/file/2019-07/LIFT%20Scan%20Application-

LIFT%20Link%2BHub_0.pdf : accessed September 2020)

Additional Information

Opportunities for optimization cover all areas of the WRRF operations. The tables below contain information on potential O&M optimization strategies and references to fact sheets or other publications where additional information on these strategies can be found. These tables are:

- Table 1. Energy Optimization Operational Strategies
- Table 2. Process Optimization Operational Strategies
- Table 3. Chemical Optimization Operational Strategies
- Table 4. Automation and Control Operational Strategies
- Table 5. Maintenance Optimization Operational Strategies
- Table 6. Other Optimization Operational Strategies

Sort	Energy Reduction Strategy	Description	Related Fact Sheets
1	Optimize blower operation	 Add jockey blower to provide efficient turndown capability Lower header pressure Optimize blower controls 	1701, 1710
2	Reduce aeration/optimize dissolved oxygen (DO) control	 Reduce operation DO Automate DO control Implement ammonia-based aeration control (ABAC) or other control strategies Manage air distribution through basins to avoid over-aeration Reduce mixing aeration in channels 	1450, 1501, 1510, 1560, 1701, 1710, 1740
3	Optimize pump operation	 Raise wet well level to reduce pump head Add jockey pump to provide efficient turndown capability Optimize internal recirculation (for denitrification) 	1501, 1510, 1560, 1701, 1710, 1740
4	Clean diffusers	 Conduct off-gas testing to determine standard oxygen transfer efficiency (SOTE) and assess value of cleaning Establish schedule to clean aeration diffusers 	1701, 1710, 1740

Table 1. Energy	Ontimization	Operational	Strategies.
TUDIC I. LINCID	, optimization	operational	ou acches.

Table 2. Process Optimization Operational Strategies.

Sort	Process Strategy	Description	Related Fact Sheets
1	Optimize BNR process	 Improve carbon use with shortcut nitrogen (N) removal, simultaneous nitrification and denitrification (SND), ABAC Improve carbon use by limiting DO and nitrate return in anoxic and anaerobic zones Eliminate/reduce short circuiting in zones 	1101, 1110, 1130, 1140, 1401, 1450, 1601, 1620, 1630
2	Optimize secondary clarifiers	Improve hydraulics with bafflingAdd flocculation zones	1101, 1160
3	Treat and manage reject water (sidestreams)	 Manage reject water return flows to avoid shock loading to WRRF Remove and/or recover nutrient (N and phosphorus [P]) in reject water 	1601, 1610, 1620, 1630
4	Track individual process and WRRF wide key performance indicators (KPIs)	 Determine KPIs for unit process and for WRRF as a whole Use past performance as starting point/base Establish goal for KPI Track progress and adjust 	See Section 4.1.4 in Report

Sort	Chemical Use Strategy	Description	Related Fact Sheets
1	Add carbon to improve N removal	Add external carbon to anoxic zone	1301, 1310
2	Add carbon to improve P removal	Add external carbon to anaerobic zone	1301, 1310
3	Generate carbon through fermentation for N and P	 Primary sludge fermentation to produce volatile fatty acids (VFAs) Activated primary treatment: operate primary with high blanket, recycle sludge to elutriate VFAs Use sidestream enhanced biological phosphorus removal (EPBR) fermentation process 	1401, 1410
4	Improve carbon use efficiency	Operate in shortcut N removal mode: SNDAvoid DO return to unaerated zone	1101, 1130, 1401, 1450
5	Optimize chemical dose/cost	 Conduct jar tests to find optimal dose Study alternative chemical for P removal Study alternative carbon sources for N/P removal (denitrification or EBPR) 	1301, 1801, 1820
6	Evaluate industrial "waste chemicals"	 Use readily degradable organic waste for carbon (denitrification or EPBR): e.g., beer waste, soda bottling, etc. 	1401, 1801, 1820
7	Improve chemical dose efficiency	Improve mixing at chemical injection point	1801, 1820
8	Use chemical sludge for P removal	 Recycle chemical sludge from tertiary process to headworks to reduce P Rely on water treatment chemical sludge to remove P in sewer/conveyance 	1801, 1850
9	Reduce returned P load in reject water	 Add chemical to dewatering operation to reduce P in reject water Recover P in reject water 	1601, 1630

Table 3. Chemical Optimization Operational Strategies.

Table 4. Automation and Control Operational Strategies.

Sort	Automation and Control Strategy	Description	Related Fact Sheets
1	Automate process controls	Automate DO controlAutomate chemical dose	1501, 1510, 1560
2	Improve equipment operation	• Tune, adjust, replace equipment to improve ability to control within required operating range	1501, 1510, 1560
3	Select/install self- cleaning sensors	Use self-cleaning sensors to reduce staff probe maintenance effort	1501, 1560

Sort	Maintenance Strategies	Description	Related Fact Sheets
1	Select/install self- cleaning sensors	Use self-cleaning sensors to reduce staff probe maintenance effort	1501, 1560
2	Replace inefficient equipment	 Replace fouled diffusers in aeration basin. Replace high-energy-use pumps: Internal recycle pumps operating at high pressure Reroute recycle stream to reduce pump pressure 	1701, 1710
3	Schedule maintenance	Maintain routine maintenance to avoid emergency maintenance work	1710
4	Limit fouling/debris of equipment components	 Install fine screens to remove debris that accumulates in the WRRF Optimize cleaning as needed: e.g., membranes, filters, diffusers, etc. 	1710

Table 5. Maintenance Optimization Operational Strategies.

Sort	Other Strategies	Description	Related Fact Sheets
1	Provide incentives to staff for ideas and suggestion	 WRRF staff knows the WRRF best and can spot opportunities for improvements Provide mechanism to make suggestions/propose ideas Incentivize staff 	1901
2	Conduct strategic evaluations and studies	 Conduct no-risk bench-, pilot-, and full-scale tests as appropriate to evaluate strategies Engage internal and external subject matter experts to conduct tests/studies to assess the potential for specific optimization. For example, conduct off-gas testing to evaluate the efficiency of an aeration system. 	1901
3	Assess data needs/samples	 Identify the need and use of data (samples, analytical work, etc.) to determine appropriate level for WRRF. Eliminate data needs/samples that are not used. Add data needs/samples that are not currently tracked but needed. This could be a short-term event. 	1901
4	Automate data analysis and trending	 Combine all WRRF performance data in a single platform for operators and others to review daily Use online data to track trends, note changes, and identify causes to process variability 	1901
5	Streamline red tape	 Review procurement rules to simplify and reduce paperwork Limit staffing rules to provide flexibility 	1901

Table 6. Other Optimization Operational Strategies.

Abbreviations

ABAC	Ammonia-based aeration control
BNR	Biological nutrient removal
BOD	Biochemical oxygen demand
CAS	Conventional activated sludge: BOD removal only
CNR	Conventional nutrient removal
DO	Dissolved oxygen
EBPR	Enhanced biological phosphorus removal
HRSD	Hampton Roads Sanitation District
1&C	Instrumentation and controls
KPI	Key performance indicator
LIFT	Leaders Innovation Forum for Technology (now RIC and RISE)
mgd	Million gallons per day
Ν	Nitrogen
NAS	Nitrifying activated sludge
NOx	Oxidized nitrogen (nitrate + nitrite)
NutRem	Nutrient removal
NutRem O&M	Nutrient removal Operations and maintenance
0&M	Operations and maintenance
O&M P	Operations and maintenance Phosphorus
O&M P RIC	Operations and maintenance Phosphorus Research & Innovation Committee
O&M P RIC RISE	Operations and maintenance Phosphorus Research & Innovation Committee Research and Innovation for Strengthening Engagement
O&M P RIC RISE SND	Operations and maintenance Phosphorus Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification
O&M P RIC RISE SND SOTE	Operations and maintenance Phosphorus Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification Standard oxygen transfer efficiency
O&M P RIC RISE SND SOTE TDL	Operations and maintenance Phosphorus Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification Standard oxygen transfer efficiency Technology Development Level
O&M P RIC RISE SND SOTE TDL TN	Operations and maintenance Phosphorus Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification Standard oxygen transfer efficiency Technology Development Level Total nitrogen
O&M P RIC RISE SND SOTE TDL TN TNR	Operations and maintenance Phosphorus Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification Standard oxygen transfer efficiency Technology Development Level Total nitrogen Tertiary nutrient removal
O&M P RIC RISE SND SOTE TDL TN TNR TP	Operations and maintenance Phosphorus Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification Standard oxygen transfer efficiency Technology Development Level Total nitrogen Tertiary nutrient removal Total phosphorus
O&M P RIC RISE SND SOTE TDL TN TNR TP UV	Operations and maintenance Phosphorus Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification Standard oxygen transfer efficiency Technology Development Level Total nitrogen Tertiary nutrient removal Total phosphorus Ultraviolet
O&M P RIC RISE SND SOTE TDL TN TNR TNR TP UV VFA	Operations and maintenance Phosphorus Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification Standard oxygen transfer efficiency Technology Development Level Total nitrogen Tertiary nutrient removal Total phosphorus Ultraviolet Volatile fatty acid