

WRF 4973 Fact Sheet: ID 1630

Strategy: Reject Water Management

Sidestream Phosphorus Treatment, Control, and Recovery

AirPrex Installation, Saltzgitter, Germany. Reprinted with permission from HDR Engineering, Inc.

P-Recovery Product. Reprinted with permission from HDR Engineering, Inc.

The soluble reactive phosphorus (SRP, typically orthophosphate [PO₄-P]) concentration in anaerobic digesters can be high. Water resource recovery facilities (WRRFs) that use enhanced biological phosphorus removal (EBPR) have very high SRP concentrations in anaerobic digesters (200–800 milligrams per liter [mg/L]). This high phosphorus (P) concentration is the result of SRP release from EBPR in addition to P from destruction of volatile solids in the digester. When this high SRP concentration is returned to the WRRF influent, the influent SRP concentration can increase 30%–90% above the influent.

Traditional strategies to control or remove SRP from the reject water are with chemical addition. Metal salts such as ferric or alum can be added to generate a chemical sludge that can be captured in the dewatering process and sent to disposal. In recent years, intentional struvite precipitation with magnesium addition has evolved as an attractive strategy for some WRRFs to manage and reduce the P recycle. If the phosphate-metal precipitant is returned to the WRRF, it will be captured in primary treatment or with the waste activated sludge (WAS) and eventually also enter the digester and be disposed with the solids stream.

The P recycle can also be interrupted by reclaiming the P as a struvite or brushite precipitant that can be used as a beneficial product. These strategies have added potential benefits in terms of improved dewaterability. This strategy for P recovery also requires EBPR to extract P from the wastewater and release SRP under anaerobic conditions, specifically anaerobic digestion.

If the WAS from an EBPR process is managed and dewatered separately (e.g., composting), it avoids P release during solids processing and can significantly reduce the P recycle. In this strategy, the EPBR phosphorus is disposed with the dewatered cake. This cake can be used in compost production and retain the P fertilizer value of the cake.

Fact Sheet Application Checklist

R = fact sheet relevant to item

PR = fact sheet is potentially relevant to item depending on application, existing conditions, etc.

Category		Intensification	Goal	R	Improve reliability
0,	R	Chemical addition		R	Reduce nutrient
		Carbon management		R	Reduce O&M cost
		I&C strategies			
	R	Sidestream mgmt.	Group	R	Optimize existing CNR
		Energy savings		R	Optimize existing TNR
		Chemical savings		R	NutRem in secondary plant
	R	Operational savings			
	R	Other means of NutRem	Process		Small
					Pond
Nutrient		Ammonia		R	Fixed film (secondary)
		NOx		R	Conventional act. sludge (CAS)
		TN		R	Nitrifying act. sludge (NAS)
	R	Ortho-P		R	Conventional NutRem (CNR)
	R	ТР		R	Tertiary NutRem (TNR)
					Other
Scale	PR	Small (<1 mgd)			
(design flow)	R	Medium (1–10 mgd)	CAS = conventional activated sludge (BOD only)		
	R	Large (>10 mgd)	NAS = nitrifying	activate	ed sludge (without denitrification)
			CNR = conventi	onal nut	rient removal no chemical/no filter, etc.
			TNR = tertiary n	utrient	removal with chemical, filter, etc.

Technology Summary Evaluation

Footprint	1	Compared to conventional (1 = much smaller; 3 = conventional; 5 = much larger)
Development status*	4–5	Technology ranking based (LIFT) see below*
Energy use	1	Scale 1–5: 1 = use much less; 3 = use similar to conventional; 5 = use much more
O&M cost	2	Scale 1–5: 1 = cost much less; 3 = cost similar to conventional; 5 = cost much more
Material/consumables	1	Scale 1–3: minimal = 1; some = 2; significant = 3 (e.g., UV lamps/membranes)
Chemical use	2	Scale 1–3: minimal/none = 1; some = 2; significant = 3 (e.g., chemical process)

* Technology ranking based on Leaders Innovation Forum for Technology (LIFT) Water Research Foundation (WRF) Technology Development Level (TDL) definitions:

1 = bench research and development

- 2 = small-scale pilot
- 3 = full-scale pilot (demonstration)
- 4 = pioneer stage (production and implementation)

5 = conventional

Descriptions/Evaluation

Strategy	Sidestream treatment for phosphorus
Description	Sequestration of soluble orthophosphate in the sidestream through chemical addition or P recovery
Application	EBPR WRRFs' phosphate-rich recycle streams from anaerobic or aerobic digesters, sludge storage lagoons, or digester decant
	Sequestration of dewatering reject water's phosphorus may occur upstream and or downstream of dewatering
Constituents removed	PO ₄ -P, total phosphorus (TP)
Development status*	LIFT TDLs: 4–5
	P sequestration through chemical addition using alum or ferric is well established.
	Technologies such as sludge conditioning upstream of digestion through magnesium addition and struvite formation during anaerobic digestion are still only in the pioneering stage.
	P recovery from dewatering centrate downstream of digestion as struvite is well established with multiple technical solutions on the market.
	P recovery from dewatering centrate following stored P release is an emerging technology.
O&M considerations	Operations and maintenance (O&M) requirements are similar to conventional chemical feed systems, including chemical management and dose control.
	Struvite-based sludge conditioning systems such as MagPrex and Nuresys add more complex process controls to manage the struvite precipitant. Foam control is required for some installations.
	P recovery systems that harvest crystals for commercial application require operation control to maintain struvite particles suitable in size, texture, and consistency to be useful as a fertilizer.
	P sequestration upstream of dewatering may require selection of a different dewatering polymer and/or a dose adjustment. In most cases the P sequestration improves dewaterability.
Benefits	Greatly reduce reject water P recycle to WRRF and reduce biological nutrient removal (BNR) influent PO_4 -P. This improves process reliability and reduces effluent P.
	Effective struvite control for dewatering, dewatering recycle equalization, and conveyance.
	Revenue source from recovered product.
	Improved dewaterability (dryer cake, lower polymer dose).
Limitations	Chemical addition for P removal will reduce the ability for beneficial P recovery.
	Specialized equipment is costly and may require capital project.
Design considerations	For chemical P sequestration:
	 Design chemical feed facilities with the ability to switch to alternative chemical or chemical formulations
	Consider multiple dose points for chemical feed systems to provide operational flexibility
	 Ensure good initial mixing Select nine and accessories material to avoid struvite precipitation
	For P recovery (EBPR typically required):
	 Protect tanks and conveyance from nuisance struvite formation on equipment
	Locate recovery system in close proximity to dewatering
Potential fatal flaws	The presence of hydrous metal oxide sludge from metal salt addition at the WRRF or entering into the WRRF from the collection will capture P and reduce the recoverable P.

	Chemical P removal at the WRRF (e.g., for tertiary treatment, hydrogen sulfide $[H_2S]$, or struvite control) will reduce P recovery product yield.			
Footprint requirements	Conventional chemical P removal:			
	Minimal: storage tanks and containment area			
	P recovery:			
	 Facilities for storage, managing struvite residuals 10%–20% of digester footprint including product storage 			
Residuals	Chemical sludge is typically disposed with dewatered sludge.			
	P recovery product for beneficial use.			
Cost considerations	Chemical purchase costs for conventional chemical P removal.			
	Capital costs to implement a commercially available P recovery process. The cost for capital investment and chemical addition to form struvite can be offset with the marketable product.			
	P recovery to create a commercial product requires specialized equipment, increased operator supervision, and quality control. A life-cycle cost evaluation is recommended.			
Past experience	Howard County, Maryland, Little Patuxent Water Reclamation Plant: P sequestration upstream of dewatering (MagPrex)			
	Pima County, Arizona, Tres Rios Water Reclamation Facility: P sequestration upstream of dewatering (Nuresys)			
	Durham Advanced Wastewater Treatment Plant (WWTP) (Oregon): P recovery from dewatering centrate (Ostara)			
	Hampton Roads Sanitation District (HRSD) Nansemond WWTP (Virginia): P recovery from solids processing (Ostara PEARL process)			
	West Boise Water Reclamation Facility (Idaho): P recovery from dewatering centrate (Multiform Harvest)			
Publications	Barnard, J., H. Phillips, and M. Steichen. 2012. "State-of-the-art recovery of phosphorus from wastewater." WEF's 85th Annual Technical Exhibition and Conference. New Orleans, Louisiana: WEFTEC.			
	Baur, R. 2011. "Results of the First Full Year of Operation of North America's First Full Scale Nutrient Removal Facility." Nutrient Recovery and Management Conference. Miami, Florida: WEF/IWA.			
	Bennett, J., M. Roser, C. Woods, and J. Sober. 2015. "Optimizing Operations to Reduce Sidestream Recycle of Phosphorus: Recycling of Phosphorus at the Trinity River Authority of Texas Denton Creek Regional Wastewater System Plant." Nutrient Symposium. San Jose, California: WEF.			
	Fang, Y., C. Wilson, and D. Katehis. 2013. "Side Stream Phosphorus Removal/Recovery- Breaking Loop of Phosphorus in EBPR Plants." Proceedings of the Water Environment Federation, 2013(12), 4195–4202.			
	Kabouris, J.C., M. Engelmann, J. Dulaney, B. Narayanan, R.A. Gillette, and A.C. Todd. 2009. "EBPR With Struvite Recovery to Reduce Chemical Consumption and Increase Nutrient Removal Reliability." WEF's 82nd Annual Technical Exhibition and Conference. Orlando, Florida: WEFTEC.			
	Mohan, G.R., J.C. Lan, R. Latimer, M. Lynch, and P. Pitt. 2018. "Nutrient Recovery Performance and Optimization of Biological Phosphorus Removal at the F. Wayne Hill Water Resources Center." Nutrient Removal and Recovery Conference. Raleigh, North Carolina: WEF.			
	Petzet, S. and P. Cornel. 2011. "Prevention of Struvite Scaling in Digesters combined with Phosphorus Removal and Recovery - The FIX-Phos Process." Nutrient Recovery and Management Conference. Miami, Florida: WEF/IWA.			
Related fact sheets	1301: Use of Chemicals to Improve Nutrient Removal 1320: Chemical Phosphorus Removal			

	1601: Reject Water (Sidestream) Management Overview
	1610: Sidestream Return Flow Management
	1820: Chemical Testing and Selection
	1901: Optimize Operation and Maintenance
Date updated	9/10/2022
Contributors	Mario Benisch, Adam Hendricks, JB Neethling, Anand Patel

Note

* Technology ranking based on LIFT WRF Technology Development Level (TDL) definitions:

1 = bench research and development

2 = small-scale pilot

3 = full-scale pilot (demonstration)

4 = pioneer stage (production and implementation)

5 = conventional (https://www.waterrf.org/sites/default/files/file/2019-07/LIFT%20Scan%20Application-

LIFT%20Link%2BHub_0.pdf : accessed September 2020)

Additional Information

Table 1 contains a list of the common chemicals used for P sequestration.

P Removal Strategy	Chemical Commonly Used	Comments
Coagulant addition	Ferric chloride Aluminum sulfate	Sequestered P remains in cake Coagulant addition generates chemical sludge and consumes alkalinity
Struvite-based sequestration	Magnesium chloride	Sequestered P remains in cake
P recovery	Magnesium chloride Magnesium hydroxide Calcium	Sequestered P is recovered Consider doing a business case evaluation Anaerobic digestion required for struvite-based recovery
		Chemical sludge (metal salt) will limit P recovery

A schematic overview of commercially available P recovery or sequestration technologies (as of 2021) is provided in Figure 1. The impact of different P recovery approaches on the WRRF phosphorus mass balance is illustrated in Figure 2 and different P recovery technologies are compared in Figure 3.

Figure 2. Impact of Recovery on P Mass Balance. Source: Reprinted with permission from HDR Engineering, Inc. Note: SPR = stored phosphorus release, REC = recovery

	Schwing - NuResys	Multiform Harvest	Ovivo - Phospaqu	CNP AirPrex	CNP CalPrex	Ostara Pearl 2000
Number of Installations					none	
US Installations	none	≥2	none	none	pilot	
Capital Cost	high	high	low	moderate	high	high
Complexity	moderate	high	low	moderate	high	high
Recovery Rate	30% - 40%	30% - 40%	30% – 40%	10% - 15%	40% - 50%	30% - 40%
Product Quality	medium	medium	low	low	high	very high
Product Value	low	low	low	low	unknown	high
Take off agreement	no	yes	no	no	no	yes
O&M Requirements	medium	high	low	low	high	high

Figure 3. P Recovery Technology Comparison. *Source:* Reprinted with permission from HDR Engineering, Inc.

Abbreviations

BNR	Biological nutrient removal
BOD	Biochemical oxygen demand
CAS	Conventional activated sludge: BOD removal only
CNR	Conventional nutrient removal
EBPR	Enhanced biological phosphorus removal
H_2S	Hydrogen sulfide
HRSD	Hampton Roads Sanitation District
I&C	Instrumentation and controls
L	Liter(s)
LIFT	Leaders Innovation Forum for Technology (now RIC and RISE)
mg	Milligram(s)
mgd	Million gallons per day
NAS	Nitrifying activated sludge
NO _x	Oxidized nitrogen (nitrate + nitrite)
NutRem	Nutrient removal
0&M	Operations and maintenance
Р	Phosphorus
PO ₄ -P	Orthophosphate
RIC	Research & Innovation Committee
RISE	Research and Innovation for Strengthening Engagement
SRP	Soluble reactive phosphorus
TDL	Technology Development Level
TN	Total nitrogen
TNR	Tertiary nutrient removal
ТР	Total phosphorus
UV	Ultraviolet
WAS	Waste activated sludge
WRF	The Water Research Foundation
WRRF	Water resource recovery facility
WWTP	Wastewater treatment plant