

## WRF 4973 Fact Sheet: ID 1510

# Strategy: Instrumentation and Controls

Improve Control, Stability, and Efficiency



Local Monitor. Reprinted with permission from S::CAN.



Various Sensors. Reprinted with permission from S::CAN.

This fact sheet acts as an extension of Fact Sheet 1501: Instrumentation and Controls and a companion to Fact Sheet 1560: Sensors and Instrumentation. While Fact Sheet 1501 introduces the use of advanced instrumentation and controls (I&C) schemes for nutrient optimization at water resource recovery facilities (WRRFs), this fact sheet, 1510, focuses on the discussion of control strategies in further detail. Different types of control schemes working in concert with advanced instrumentation are discussed in this fact sheet. Control schemes discussed include dissolved oxygen (DO) control, airflow control, ammonia-based aeration control (ABAC), chemical feed control, and others.



### Fact Sheet Application Checklist

#### R = fact sheet relevant to item

PR = fact sheet is potentially relevant to item depending on application, existing conditions, etc.

|               |    | 1                     | 1                                                               |          | 1                                   |
|---------------|----|-----------------------|-----------------------------------------------------------------|----------|-------------------------------------|
| Category      | PR | Intensification       | Goal                                                            | R        | Improve reliability                 |
|               | PR | Chemical addition     |                                                                 | R        | Reduce nutrient                     |
|               | PR | Carbon management     |                                                                 | R        | Reduce O&M cost                     |
|               | R  | I&C strategies        |                                                                 |          | 1                                   |
|               | PR | Sidestream mgmt.      | Group                                                           | R        | Optimize existing CNR               |
|               | PR | Energy savings        |                                                                 | R        | Optimize existing TNR               |
|               | PR | Chemical savings      |                                                                 | PR       | NutRem in secondary plant           |
|               | PR | Operational savings   |                                                                 | ·        |                                     |
|               |    | Other means of NutRem | Process                                                         |          | Small                               |
|               |    | -                     |                                                                 |          | Pond                                |
| Nutrient      | R  | Ammonia               |                                                                 |          | Fixed film (secondary)              |
|               | R  | NOx                   |                                                                 |          | Conventional act. sludge (CAS)      |
|               | PR | TN                    |                                                                 | R        | Nitrifying act. sludge (NAS)        |
|               | R  | Ortho-P               |                                                                 | R        | Conventional NutRem (CNR)           |
|               | PR | ТР                    |                                                                 | R        | Tertiary NutRem (TNR)               |
|               |    |                       |                                                                 |          | Other                               |
|               |    | -                     |                                                                 |          |                                     |
| Scale         | R  | Small (<1 mgd)        |                                                                 |          |                                     |
| (design flow) | R  | Medium (1–10 mgd)     | CAS = conventional activated sludge (BOD only)                  |          |                                     |
|               | R  | Large (>10 mgd)       | NAS = nitrifying activated sludge (without denitrification)     |          |                                     |
|               |    |                       | CNR = conventional nutrient removal no chemical/no filter, etc. |          |                                     |
|               |    |                       | TNR = tertiary                                                  | nutrient | removal with chemical, filter, etc. |

#### **Technology Summary Evaluation**

| Footprint           | 1   | Compared to conventional (1 = much smaller; 3 = conventional; 5 = much larger)      |
|---------------------|-----|-------------------------------------------------------------------------------------|
| Development status* | 4–5 | Technology ranking based (LIFT) see below*                                          |
| Energy efficiency   | 2   | Scale 1–5: 1 = use much less; 3 = use similar to conventional; 5 = use much more    |
| O&M impact          | 2   | Scale 1–5: 1 = cost much less; 3 = cost similar to conventional; 5 = cost much more |
| Material/consumable | 2   | Scale 1–3: minimal = 1; some = 2; significant = 3 (e.g., UV lamps/membranes)        |
| Chemical use        | 1   | Scale 1–3: minimal/none = 1; some = 2; significant = 3 (e.g., chemical process)     |

\* Technology ranking based on Leaders Innovation Forum for Technology (LIFT) Water Research Foundation (WRF) Technology Development Level (TDL) definitions:

- 1 = bench research and development
- 2 = small-scale pilot
- 3 = full-scale pilot (demonstration)
- 4 = pioneer stage (production and implementation)
- 5 = conventional



### Descriptions/Evaluation

| Stratomy               | Instrumentation and controls control, stability, and officiency                                                                                                                                                                                                                       |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strategy               | Instrumentation and controls: control, stability, and efficiency                                                                                                                                                                                                                      |
| Description            | As introduced in Fact Sheet 1501, I&C is a key part of nutrient removal process control. This fact sheet discusses specific control strategies oriented toward improving stability and efficiency of nutrient removal processes giving an overall optimization.                       |
| Application            | Multiple applications are listed here and presented in more detail in Table 1:                                                                                                                                                                                                        |
|                        | <ul> <li>Feedback controller</li> <li>Feedforward controller</li> <li>Air supply</li> <li>DO controller</li> <li>DO control</li> <li>ABAC</li> <li>Ammonia vs. NO<sub>x</sub> (AvN)</li> <li>Internal nitrified recycle control for denitrification</li> <li>Chemical dose</li> </ul> |
| Constituents removed   | Ammonia, oxidized nitrogen (nitrate + nitrite) (NO <sub>x</sub> ), total nitrogen (TN), Ortho-P, total phosphorus (TP)—all are potentially optimized by I&C improvements                                                                                                              |
| Development status*    | LIFT TDLs 4–5. Most strategies are well developed. New control approaches and probes continue to emerge.                                                                                                                                                                              |
| O&M considerations     | Operations and maintenance (O&M) considerations are focused primarily on sensor maintenance, which is discussed in the companion Fact Sheet 1560.                                                                                                                                     |
| Benefits               | Provide accurate and continuous monitoring of process streams to verify performance and maintain stable operation                                                                                                                                                                     |
|                        | Allow for fine tuning and early warning of process performance                                                                                                                                                                                                                        |
|                        | Optimize chemical and energy use                                                                                                                                                                                                                                                      |
|                        | Reduce operator effort (offset by increased maintenance)                                                                                                                                                                                                                              |
| Limitations            | Instrument and probe maintenance (offset by decreased operator time). Self-cleaning probes can reduce maintenance requirements.                                                                                                                                                       |
| Design considerations  | Probe locations must be carefully evaluated to collect representative samples.                                                                                                                                                                                                        |
| Potential fatal flaws  | I&C cannot overcome equipment limitations—for example, blower control may be limited by equipment capacity (high end) and ability to turn down to low demands (low end)                                                                                                               |
| Footprint requirements | Small                                                                                                                                                                                                                                                                                 |
| Residuals              | None                                                                                                                                                                                                                                                                                  |
| Cost considerations    | Depends on probe type and function. Determine specific cost based on life-cycle analysis (LCA) and include both capital and O&M cost.                                                                                                                                                 |
| Past experience        | Raleigh, North Carolina                                                                                                                                                                                                                                                               |
|                        | San Antonio Water System (SAWS)                                                                                                                                                                                                                                                       |
|                        | Lincoln, Nebraska                                                                                                                                                                                                                                                                     |
|                        | Denver, Colorado, Metro Wastewater Reclamation District (MWRD) in Robert Hite Facility                                                                                                                                                                                                |
| Publications           | Miller, M.; P. Regmi, J. Jimenez. 2019. Sensors Versus Analyzers: The Case for Ammonia-based<br>Aeration Control. Proceedings of the 92nd Water Environment Federation's Technical<br>Exhibition Conference (WEFTEC), Chicago, Illinois.                                              |
|                        | Regmi, P., B. Holgate, D. Fredericks, M.W. Miller, B. Wett, S. Murthy, C.B. Bott. 2015.<br>Optimization of a mainstream nitritation-denitritation process and anammox polishing. Water<br>Science Technology. 72(4), 632–642.                                                         |



|                     | Rieger, L., R.M. Jones, P.L. Dold, and C.B. Bott. 2012. "Myths about Ammonia Feedforward<br>Aeration Control." Proceedings of the 85th Water Environment Federation's Technical<br>Exhibition and Conference, New Orleans, Louisiana. |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Rieger, L., R.M. Jones, P.L. Dold, and C.B. Bott. 2014. "Ammonia-Based Feedforward and<br>Feedback Aeration Control in Activated Sludge Processes." Water Environment Research.<br>86(1), 63–73.                                      |
|                     | Schraa, O., L. Rieger, J. Alex, I. Miletic. 2019. Ammonia-based aeration control with optimal SRT control: improved performance and lower energy consumption. Wat. Sci. Tech. 79(1), 63–72.                                           |
| Related fact sheets | 1150: Use of chemicals to improve nutrient removal                                                                                                                                                                                    |
|                     | 1401: Optimize Carbon Use for Nutrient Removal                                                                                                                                                                                        |
|                     | 1410: Fermentation                                                                                                                                                                                                                    |
|                     | 1450: DO Control to Increase Denitrification                                                                                                                                                                                          |
|                     | 1501: Overview of Instrumentation and Control Strategies                                                                                                                                                                              |
|                     | 1560: Sensors and Instrumentation                                                                                                                                                                                                     |
|                     | 1701: Reduce Energy Consumption Overview                                                                                                                                                                                              |
|                     | 1740: Reduce Process Power Demand                                                                                                                                                                                                     |
|                     | 1820: Chemical Testing and Selection                                                                                                                                                                                                  |
|                     | 1901: Optimize Operation and Maintenance                                                                                                                                                                                              |
| Date updated        | 9/10/2022                                                                                                                                                                                                                             |
| Contributors        | Eric Evans, Leiv Rieger, Erika Bailey, JB Neethling, Anand Patel                                                                                                                                                                      |

Note

\* Technology ranking based on LIFT WRF TDL definitions:

1 = bench research and development

2 = small-scale pilot

3 = full-scale pilot (demonstration)

4 = pioneer stage (production and implementation)

5 = conventional (https://www.waterrf.org/sites/default/files/file/2019-07/LIFT%20Scan%20Application-

LIFT%20Link%2BHub\_0.pdf : accessed September 2020)



#### Instrumentation and Controls Applications



**Figure 1. Schematic Representation of Feedback Controller.** *Source:* Rieger et al. 2014. Reprinted with permission from inCTRL Inc.



Figure 2. Schematic Representation of Feed-Forward Controller. Source: Rieger et al. 2014. Reprinted with permission from inCTRL Inc.

| Control Strategy            | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nutrient               | Control Measurements |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|
| Feedback controllers        | A disturbance causes a change in process that<br>affects a measured process variable (controlled<br>variable) that is input to the controller; e.g., DO<br>concentration. In turn, the controller changes a<br>process control variable (manipulated variable)<br>to reduce the difference (error) between the<br>measured and set point value; e.g., airflow.                                                                                                                     | Multiple:<br>see below | Multiple: see below  |
| Feed-forward<br>controllers | A process disturbance is measured and input into<br>the controller; e.g., change in influent ammonia<br>load. The controller then uses a model to predict<br>the impact on the controlled process. The<br>controller predictions are then applied to<br>determine or calculate the control action to be<br>taken; e.g., airflow change.<br>Feed-forward control must be complemented by<br>a feedback controller or a feedback signal should<br>be used in the feed-forward model. | Multiple:<br>see below | Multiple: see below  |

| Table 1. Strategies that Rely on Instrumentation and Controls | Table | 1. Strategies t | hat Rely on | Instrumentation | and Controls |
|---------------------------------------------------------------|-------|-----------------|-------------|-----------------|--------------|
|---------------------------------------------------------------|-------|-----------------|-------------|-----------------|--------------|



| Control Strategy                             | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nutrient                      | Control Measurements |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|
| Air supply control                           | <ul> <li>The total airflow supplied by a set of blowers is typically controlled based on: <ul> <li>Pressure</li> <li>Total airflows requested by air distribution controllers</li> <li>Average DO over all trains and aeration grids</li> </ul> </li> <li>Individual blower airflow may be adjusted by one or multiple methods including: <ul> <li>Inlet throttling</li> <li>Blower turndown (variable-frequency drive [VFD], inlet vanes, etc.)</li> <li>Discharge valve throttling</li> </ul> </li> <li>An additional controller is required to assign parts of the required airflows to specific blowers.</li> <li>Most-open valve (MOV) control schemes are applied to coordinate between air distribution system demands and the air supply control system. The goal is to prevent blowers working against closed valves.</li> </ul> | Ammonia,<br>nitrate           | Multiple             |
| Air distribution control<br>(DO, ABAC, etc.) | Control distribution of air to the BNR process to<br>achieve control objectives such as DO control,<br>ABAC, etc. See below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Varies                        | Varies               |
| DO control                                   | Control biological process to maintain set DO concentrations. DO set point can be operator input or adjusted based on secondary control. It is typically in the form of a controller cascade:<br>DO $\rightarrow$ airflow $\rightarrow$ valve position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ammonia<br>Nitrate<br>Ortho-P | DO                   |
| Ammonia-based<br>aeration control (ABAC)     | Manipulate DO set point to achieve a certain<br>target ammonia concentration.<br>ABAC represents a control scheme whereby<br>aeration is throttled to provide the right amount<br>of air to meet the ammonia targets. The result is<br>a more efficient process with lower airflows and<br>the potential for improved TN removal as a result<br>of increased anoxic environments.<br>Multiple ABAC options have been applied<br>successfully. The standard approach is feedback<br>cascade control, whereby measured effluent<br>ammonia concentrations are used to control the<br>DO set point, which in turn controls airflow.<br>Extended ABAC strategies include feed-forward<br>with feedback control.                                                                                                                               | Ammonia<br>TN                 | Ammonia<br>DO        |



| Control Strategy                                             | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nutrient                   | Control Measurements                    |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|
| Ammonia vs. NO <sub>x</sub> (AvN)                            | AvN is an aeration control strategy to oxidize a<br>fraction of the ammonia. In this approach<br>ammonia and nitrate plus nitrite are measured<br>and the ratio is calculated and input to a<br>controller. The controller then adjusts to meet<br>the optimum set point AvN ratio. AvN is an<br>aeration control strategy commonly used in<br>shortcut nitrogen (N) removal processes such as<br>partial nitritation anammox (PNA) or partial<br>denitrification annamox (PdNA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nitrogen                   | Ammonia<br>Nitrate                      |
| Internal nitrified<br>recycle control for<br>denitrification | Control nitrified mixed liquor recycle (NMLR) flow<br>rate based on target NO <sub>x</sub> or oxidation-reduction<br>potential (ORP) measurement to improve<br>denitrification.<br>Denitrification in pre-anoxic zones depends on<br>recycle from the aerobic zone to supply nitrates<br>or NMLR. The rate of NMLR typically varies<br>between 100% and 400% of the influent flow<br>rate. NMLR control is used to provide the<br>optimum NMLR rate for efficient pumping.<br>Nitrate, nitrate plus nitrite, or ORP is measured<br>with a set point applied, and the controller<br>adjusts the NMLR flow rate to align the set point<br>with the measured value.<br>NO <sub>x</sub> controllers for NMLR should be carefully<br>evaluated when ABAC is applied. Typically the<br>NMLR flow is maximized as ABAC introduces<br>simultaneous nitrification and denitrification<br>(SND), leading to insufficient NO <sub>x</sub> concentrations<br>in the NMLR stream. In extreme cases, this can<br>negatively impact nitrification performance and<br>overall N removal performance. | NOx                        | NO <sub>x</sub> or ORP                  |
| Chemical dose to<br>maintain dose<br>concentration           | Adjust chemical dose to maintain a set chemical<br>dose concentration (milligrams per liter [mg/L])<br>in liquid as flow change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO <sub>x</sub><br>Ortho-P | Flow at dose point                      |
| Chemical dose to<br>maintain nutrient<br>concentration       | Control chemical dose based on nutrient<br>concentration measurement (example ortho-P)<br>to maintain concentration at target value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Multiple                   | Nutrient concentration after dose point |



#### Abbreviations

| ABAC            | Ammonia-based aeration control                             |
|-----------------|------------------------------------------------------------|
| AvN             | Ammonia versus NO <sub>x</sub> (aeration control)          |
| BNR             | Biological nutrient removal                                |
| BOD             | Biochemical oxygen demand                                  |
| CAS             | Conventional activated sludge: BOD removal only            |
| CNR             | Conventional nutrient removal                              |
| DO              | Dissolved oxygen                                           |
| I&C             | Instrumentation and controls                               |
| L               | Liter(s)                                                   |
| LCA             | Life-cycle analysis                                        |
| LIFT            | Leaders Innovation Forum for Technology (now RIC and RISE) |
| mg              | Milligram(s)                                               |
| mgd             | Million gallons per day                                    |
| MOV             | Most-open valve                                            |
| MWRD            | Metro Wastewater Reclamation District                      |
| Ν               | Nitrogen                                                   |
| NAS             | Nitrifying activated sludge                                |
| NMLR            | Nitrified mixed liquor recycle                             |
| NO <sub>x</sub> | Oxidized nitrogen (nitrate + nitrite)                      |
| NutRem          | Nutrient removal                                           |
| 0&M             | Operations and maintenance                                 |
| ORP             | Oxidation-reduction potential                              |
| PdNA            | Partial denitrification with anammox                       |
| PNA             | Partial nitritation anammox                                |
| RIC             | Research & Innovation Committee                            |
| RISE            | Research and Innovation for Strengthening Engagement       |
| SAWS            | San Antonio Water System                                   |
| SND             | Simultaneous nitrification and denitrification             |
| TDL             | Technology Development Level                               |
| TN              | Total nitrogen                                             |
| TNR             | Tertiary nutrient removal                                  |
| ТР              | Total phosphorus                                           |
| UV              | Ultraviolet                                                |
| VFD             | Variable-frequency drive                                   |
| WRF             | The Water Research Foundation                              |
|                 |                                                            |



WRRF Water resource recovery facility