

WRF 4973 Fact Sheet: ID 1130

Strategy: Process Intensification

Improve Nutrient Removal in an Existing BNR Process

Simultaneous Nitrification and Denitrification Can Achieve TN Reduction. Source: HDR Engineering, Inc.

Partial Denitrification/Anammox Process. Source: Printed with permission from HRSD.

This fact sheet addresses strategies to improve nutrient removal in an existing conventional nutrient removal (CNR) facility, specifically biological nutrient removal (BNR) facilities. The strategies presented here include both optimization strategies that reduce effluent nutrient levels and strategies to improve the reliability of meeting effluent nutrient goals.

Strategies presented in this fact sheet typically require minor investments and operational changes to existing BNR basins to improve nutrient removal efficiency and/or reliability. Many of the strategies are documented in other fact sheets (see <u>Related Fact Sheets</u> in table below). Within the context of optimization, this fact sheet focuses on strategies with a favorable return on investment (to reduce operating costs) that also reduce effluent nutrient concentrations and increase treatment reliability.

Fact Sheet Application Checklist

R = fact sheet relevant to item

PR = fact sheet is potentially relevant to item depending on application, existing conditions, etc.

		1	1		1
Category	R	Intensification	Goal	R	Improve reliability
		Chemical addition		R	Reduce nutrient
	R	Carbon management			Reduce O&M cost
	R	I&C strategies			
	R	Sidestream mgmt.	Group	R	Optimize existing CNR
	R	Energy savings			Optimize existing TNR
	R	Chemical savings			NutRem in secondary plant
	R	Operational savings			
		Other means of NutRem	Process	R	Small
					Pond
Nutrient	R	Ammonia			Fixed film (secondary)
	R	NOx			Conventional act. sludge (CAS)
	R	TN		R	Nitrifying act. sludge (NAS)
	R	Ortho-P		R	Conventional NutRem (CNR)
	R	ТР		R	Tertiary NutRem (TNR)
					Other
		_			
Scale	R	Small (<1 MGD)			
(design flow)	R	Medium (1–10 MGD)	CAS = conventi	onal acti	ivated sludge (BOD only)
	R	Large (>10 MGD)	NAS = nitrifying	g activat	ed sludge (without denitrification)
		-	CNR = convent	ional nut	trient removal no chemical/no filter, etc.
			TNR = tertiary	nutrient	removal with chemical, filter, etc.

Technology Summary Evaluation

Footprint	1	Compared to conventional (1 = much smaller; 3 = conventional; 5 = much larger)
Development status*	3–5	Technology ranking based (LIFT) see below*
Energy use	2	Compared to conventional (1 = much less; 3 = conventional; 5 = much more)
O&M cost	3	Compared to conventional (1 = much less; 3 = conventional; 5 = much more)
Material/consumables	1–3	Scale 1–3: minimal = 1; some = 2; significant = 3 (e.g., UV lamps/membranes)
Chemical use	1–3	Scale 1–3: minimal/none = 1; some = 2; significant = 3 (e.g., chemical process)

* Technology ranking based on Leaders Innovation Forum for Technology (LIFT) Water Research Foundation (WRF) Technology Development Level (TDL) definitions:

- 1 = bench research and development
- 2 = small-scale pilot
- 3 = full-scale pilot (demonstration)
- 4 = pioneer stage (production and implementation)
- 5 = conventional

Descriptions/Evaluation

Strategy	Improve nutrient removal in an existing CNR process
Description	Improve BNR in an existing BNR process by modifying operation strategy, process configuration, installing new equipment, and other strategies. The possible optimization strategies depend on the current activated sludge process, basin layout, process selection, etc. Some strategies may require additional tankage or take advantage of "unused available" capacity. In water resource recovery facilities (WRRFs) that operate below their rated capacity, the excess "capacity" can be used to optimize nutrient removal.
	The following approaches are presented in this fact sheet:
	 Simultaneous nitrification and denitrification (SND): modify operation to allow nitrification and denitrification to occur at the same time Phased nitrification and denitrification (PNDN): operate with intermittent aeration to achieve sequential nitrification and denitrification in the same basin Split treatment: a strategy to achieve some nutrient reduction in one or more parallel activated sludge trains while maintaining other trains in biochemical oxygen demand (BOD) mode Mixed liquor suspended solids (MLSS) fermentation to improve enhanced biological
	 Mixed indust subpended solids (MESS) fermicitation to improve emanced biological phosphorus removal (EBPR): turning mixers in anaerobic zone off to ferment MLSS and generate volatile fatty acids (VFAs) for improved EBPR Shortcut nitrogen (N) removal with partial nitritation anammox (PNA) Shortcut N removal with partial denitrification with anammox (PdNA) Sidestream nitrification-denitrification (NDN) using existing tankage
Application	Some of these strategies rely on "spare capacity" in existing basins to function in a new way. Others may require more efficient equipment or process controls. In most cases this would involve an existing activated sludge system that has excess capacity (if the WRRF's current load is below design capacity or if spare/redundant basins are available) or the addition of capacity through intensification strategies i.e., increased biomass (see Fact Sheet 1110).
Constituents removed	Nitrogen and/or phosphorus
Development status*	LIFT TDLs 3–5: BNR zoning is established technology but some recent innovations like return activated sludge (RAS) fermentation, PdNA, or low– dissolved oxygen (DO) nitrification have been demonstrated in full scale but some design and operating criteria remain to be resolved.
O&M considerations	Varies based on selected technology or strategy (see Table 1).
Benefits	Varies based on selected technology or strategy but can include increased nutrient removal and treatment reliability without additional infrastructure, improved effluent water quality, and/or lower operational costs.
Limitations	Existing system must have excess capacity or incorporate an intensification strategy
Design considerations	Design considerations are specific to the existing infrastructure (see Table 1).
Potential fatal flaws	Insufficient excess capacity, intensification not possible
Footprint requirements	None
Residuals	BNR upgrade will reduce nitrogen and/or phosphorus while all other effluent residual levels will be similar. Increasing the solids retention time (SRT) will result in lower solids production.
Cost considerations	Depends on the design approach and existing basin geometry and layout
Past experience	St. Joseph, Missouri: Conversion of trickling filter/activated sludge (TF/AS) plant. Existing aeration basin converted to anaerobic-anoxic-aerobic (A2O). Existing unused aerobic digesters converted to five-stage Bardenpho.
	Bozeman, Montana; Silverton, Oregon; Columbia Falls, Idaho; Hamilton, Montana: all implemented PNDN.

Publications	Benisch, M., P. Young, and A. Clements. 2019. "Achieving Nitrification and Nutrient Removal through Mainstream Bio-Augmentation from Parallel Plant." Nutrient Removal and Recovery Symposium. Minneapolis, Minnesota: WEF.
	Bott, C., S. Klaus, and M. Parsons. 2020. "Mainstream Partial Denitrification/Anammox: Results from Operation in a Full-Scale Deep-Bed Filter (informed by pilot-scale MBBR research)" WEFTEC 2020.
	Macmanus, J., C.B. Bott, H. De Clippeleir, M. Parsons, and S. Klaus. 2021. "Startup and Pilot Testing of MBBR and IFAS Partial Denitrification/Anammox Processes." WEFTEC 2021.
	Neethling, JB, Bruce Willey, Dan Harmon, Mario Benisch (2007). "Phased Nitrification- Denitrification Provides Flexible Nitrogen Removal." WEF Nutrient Removal Conference, Baltimore, 2007.
Related fact sheets	1101: Process Intensification Overview
	1110: Increase Biomass
	1140: Optimize BNR Effectiveness
	1150: Use of Chemicals to Improve Nutrient Removal
Date updated	9/10/2022
Contributors	JB Neethling, James Barnard, Stephanie Klaus, Michael Liu, Erika Bailey, Mario Benisch, Justin Macmanus, Adam Hendricks, Anand Patel

Note

* Technology ranking based on LIFT WRF TDL definitions:

1 = bench research and development

2 = small-scale pilot

3 = full-scale pilot (demonstration)

4 = pioneer stage (production and implementation)

5 = Conventional (https://www.waterrf.org/sites/default/files/file/2019-07/LIFT%20Scan%20Application-

LIFT%20Link%2BHub_0.pdf : accessed September 2020)

Additional Information

Most WRRFs in operation have some amount of excess capacity beyond what is required for redundancy, which can be used to increase the level of treatment. If such excess capacity is unavailable at a WRRF, intensification strategies can free up capacity for the same purpose.

In some cases, simple changes in operational strategy may be all that is needed. Oxidation ditches, for instance, have excess treatment capacity by design. By separating aeration from mixing, aeration controls can be adjusted to achieve BNR through cyclical aeration or SND through low DO operation.

Feature	SND	PNDN	PNA	PdNA	Split Treat- ment	RAS or MLSS Fermentation	RAS Nitrification or Sidestream NDN
Modification	Control aer- ation to achieve SND	Control aera- tion ON/OFF to achieve se- quential nitrifi- cation and de- nitrification	Aeration and SRT control to denitrify via NO ₂ and/or anammox	Generate nitrite (NO ₂) by adding carbon to partially de- nitrify ni- trate (NO ₃), followed by shortcut N removal	Convert one or more trains to nu- trient re- moval and blend with existing WRRF	Intermittently mix in unaer- ated zones to promote low oxidation-re- duction po- tential (ORP) conditions for fermentation to occur. RAS/MLSS to generate VFA.	Use unused exist- ing tanks to lower recycle ammonia and N loads
Nutrients im- pacted	Ammonium (NH ₄), oxi- dized nitro- gen (nitrate + nitrite) (NO _x), total nitrogen (TN)	NH4, NO _x , TN	NH₄, NO _x , TN	NH4, NO _x , TN	NH4, NO _x , TN	NH4, NO _x , TN, Ortho-P, total phosphorus (TP)	NH4, NO _x , TN
Impact on ca- pacity	Small	Small	Small	Small	Some	Small	Can be significant with bioaugmen-tation
Modifications (potential)	Instrumen- tation and controls (I&C) Blower con- trol	Blower output (on/off) on timer or I&C. Pulse aerate Mixer (or allow settling)	Blower output (on/off) and I&C	Blower out- put (on/off) and I&C Carbon ad- dition	Require "spare ba- sins" Convert some trains to BNR	Control on mixers to turn on/off Flow routing through basin likely to change	Adding/ repairing mixers or diffus- ers and other fixes to repur- pose existing tanks

Table 1. Features of Basin Conversion Strategies.

Feature	SND	PNDN	PNA	PdNA	Split Treat- ment	RAS or MLSS Fermentation	RAS Nitrification or Sidestream NDN
Design Considerations	Minimize air for oxygen demand may be less than re- quired for mixing espe- cially with well settling solids Additional mechanical mixing may be needed Post-aera- tion recom- mended to increase DO before final clarifiers	Post-aeration zone required to raise DO Balance air de- mand from cy- clical aeration with blower start/stop limi- tations ORP can be used as control	Post-aera- tion zone required to raise DO Balance air de- mand blower control Nutrient (NO ₂ , NO ₃ , NH ₄) and ORP can be used as control	Post-aera- tion zone required to raise DO Balance air demand blower con- trol Nutrient (NO ₂ , NO ₃ , NH ₄) and ORP can be used as control	Transition from unaer- ated to aer- ated zones should in- clude sub- merged weir wall to pre- vent surface backflow Baffle walls do not need to be load bearing and can be con- structed out of aluminum and even ma- rine plywood when basins are small and spans are short	Covers and odor control recom- mended for facilities lo- cated in areas sensitive to odors Mixing inten- sity modest to low/in- terim	Without NDN or alkalinity addition only 50% of the recycle ammonia can be nitrified. Air on/off opera- tion can increase nitrification rate as well as N re- moval

Abbreviations

A20	Anaerobic-anoxic-aerobic
BNR	Biological nutrient removal
BOD	Biochemical oxygen demand
CAS	Conventional activated sludge: BOD removal only
CNR	Conventional nutrient removal
DO	Dissolved oxygen
EBPR	Enhanced biological phosphorus removal
I&C	Instrumentation and controls
LIFT	Leaders Innovation Forum for Technology (now RIC and RISE)
mgd	Million gallons per day
MLSS	Mixed liquor suspended solids
Ν	Nitrogen
NAS	Nitrifying activated sludge
NDN	Nitrification-denitrification
NH_4	Ammonium
NO_2	Nitrite
NO_3	Nitrate
NOx	Oxidized nitrogen (nitrate + nitrite)
	S (
NutRem	Nutrient removal
NutRem O&M	
	Nutrient removal
0&M	Nutrient removal Operations and maintenance
O&M ORP	Nutrient removal Operations and maintenance Oxidation reduction potential
O&M ORP PdNA	Nutrient removal Operations and maintenance Oxidation reduction potential Partial denitrification with anammox
O&M ORP PdNA PNA	Nutrient removal Operations and maintenance Oxidation reduction potential Partial denitrification with anammox Partial nitritation anammox
O&M ORP PdNA PNA PNDN	Nutrient removal Operations and maintenance Oxidation reduction potential Partial denitrification with anammox Partial nitritation anammox Phased nitrification and denitrification
O&M ORP PdNA PNA PNDN RAS	Nutrient removal Operations and maintenance Oxidation reduction potential Partial denitrification with anammox Partial nitritation anammox Phased nitrification and denitrification Return activated sludge
O&M ORP PdNA PNA PNDN RAS RIC	Nutrient removal Operations and maintenance Oxidation reduction potential Partial denitrification with anammox Partial nitritation anammox Phased nitrification and denitrification Return activated sludge Research & Innovation Committee
O&M ORP PdNA PNA PNDN RAS RIC RISE	Nutrient removal Operations and maintenance Oxidation reduction potential Partial denitrification with anammox Partial nitritation anammox Phased nitrification and denitrification Return activated sludge Research & Innovation Committee Research and Innovation for Strengthening Engagement
O&M ORP PdNA PNA PNDN RAS RIC RISE SND	Nutrient removal Operations and maintenance Oxidation reduction potential Partial denitrification with anammox Partial nitritation anammox Phased nitrification and denitrification Return activated sludge Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification
O&M ORP PdNA PNA PNDN RAS RIC RISE SND SNR	Nutrient removal Operations and maintenance Oxidation reduction potential Partial denitrification with anammox Partial nitritation anammox Phased nitrification and denitrification Return activated sludge Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification Secondary nutrient removal
O&M ORP PdNA PNA PNDN RAS RIC RISE SND SNR SRT	Nutrient removal Operations and maintenance Oxidation reduction potential Partial denitrification with anammox Partial nitritation anammox Phased nitrification and denitrification Return activated sludge Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification Secondary nutrient removal Solids retention time
O&M ORP PdNA PNA PNDN RAS RIC RISE SND SNR SNR SNR SRT TDL	Nutrient removal Operations and maintenance Oxidation reduction potential Partial denitrification with anammox Partial nitritation anammox Phased nitrification and denitrification Return activated sludge Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification Secondary nutrient removal Solids retention time Technology Development Level
O&M ORP PdNA PNA PNDN RAS RIC RISE SND SNR SNR SNR SRT TDL TF/AS	Nutrient removal Operations and maintenance Oxidation reduction potential Partial denitrification with anammox Partial nitritation anammox Phased nitrification and denitrification Return activated sludge Research & Innovation Committee Research and Innovation for Strengthening Engagement Simultaneous nitrification and denitrification Secondary nutrient removal Solids retention time Technology Development Level Trickling filter/activated sludge

- TSS Total suspended solids
- UV Ultraviolet
- VFA Volatile fatty acid
- WRF The Water Research Foundation
- WRRF Water resource recovery facility